

Instituto de Química Departamento de Processos Químicos Graduação em Engenharia Química

Processos Químicos I

(QUI 07-09519)

Prof. Marcos Antonio da Silva Costa

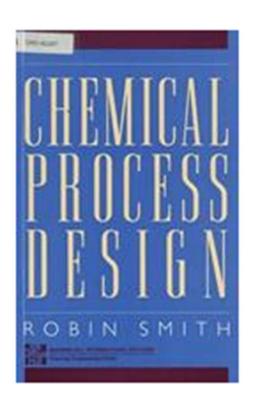
Sala 424-A

E-mail: marcoscosta.iq.uerj@gmail.com

http://prof-marcos-iq-uerj.webnode.com/

2025/2

Instituto de Química Departamento de Processos Químicos Graduação em Engenharia Química


1. Processos Químicos I

2. Processos Químicos II

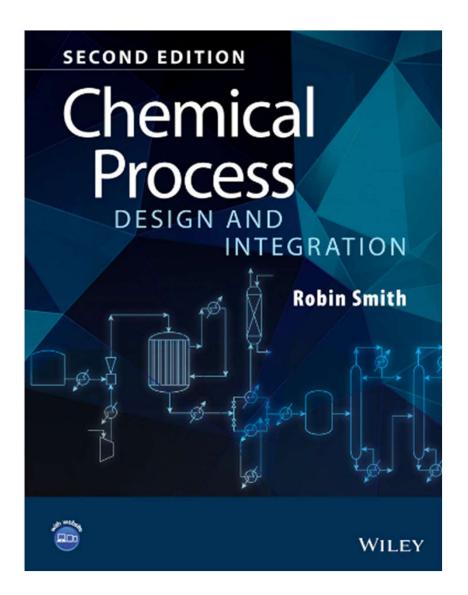
3. Processos Químicos III

4. Desenvolvimento de Processos

Bibliografia

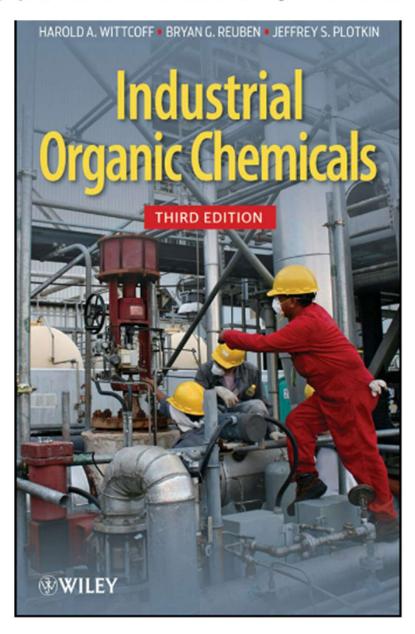
Chemical process design / Robin Smith

Smith, R. (Robin)

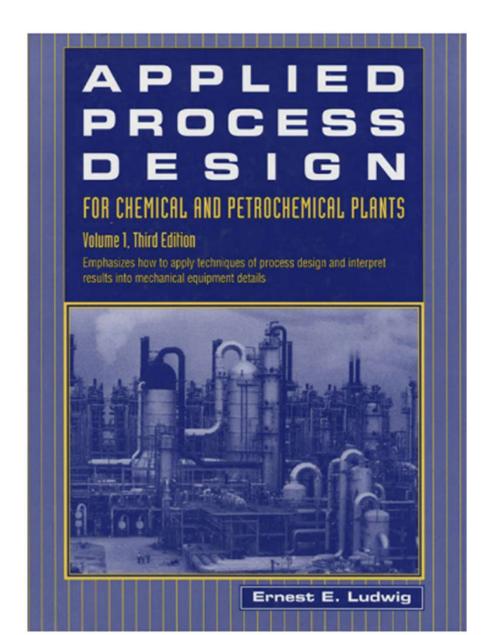

Chemical processes

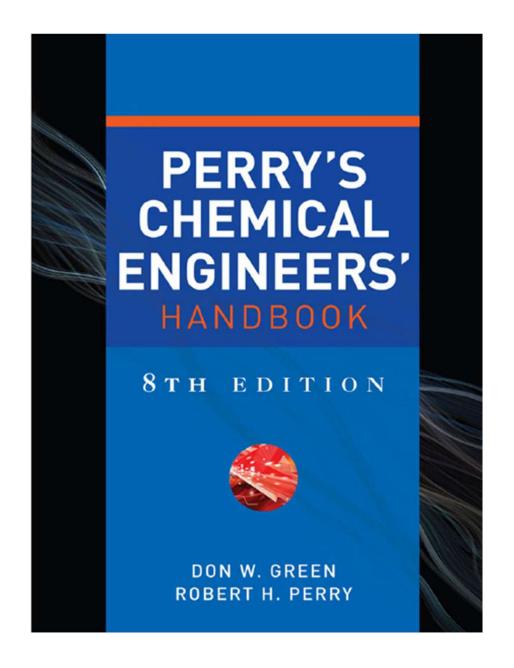
Science and technology

Singapore: McGraw-Hill, 1995


Chemical Process Design and Integration (English Edition)

Edição Inglês | por Robin Smith | 8 ago. 2016

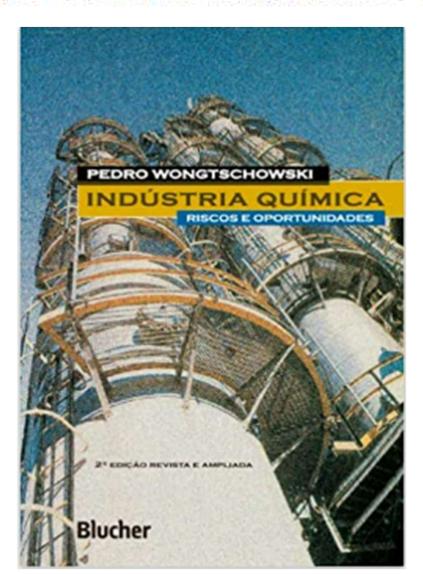

Industrial Organic Chemicals (English Edition)


Edição Inglês | por Harold A. Wittcoff, Bryan G. Reuben, e outros. | 9 nov. 2012

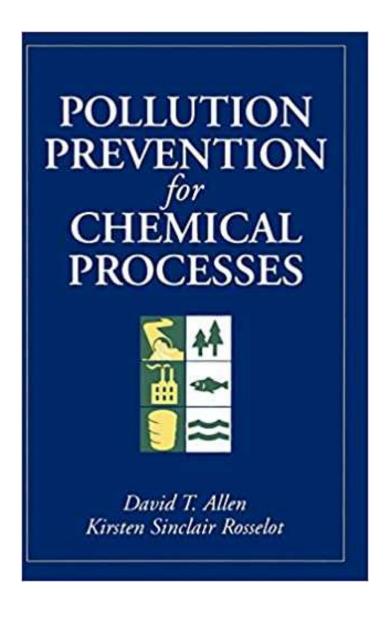
Applied Process Design for Chemical and Petrochemical Plants: Volume 1 (English Edition)

Edição Inglês | por Ernest E. Ludwig | 23 fev. 1995

	Section
Conversion Factors and Mathematical Symbols	1
Physical and Chemical Data Bruce E. Poling, George H. Thomson, Daniel G. Friend,	
Richard L. Rowley, W. Vincent Wilding	2
Mathematics Bruce A. Finlayson, Lorenz T. Biegler	3
Thermodynamics Hendrick C. Van Ness, Michael M. Abbott	4
Heat and Mass Transfer Hoyt C. Hottel, James J. Noble, Adel F. Sarofim, Geoffrey D. Silcox, Phillip C. Wankat, Kent S. Knaebel	5
Fluid and Particle Dynamics James N. Tilton	
Reaction Kinetics Tiberiu M. Leib, Carmo J. Pereira	
Process Control Thomas F. Edgar, Cecil L. Smith, F. Greg Shinskey, George W. Gassman, Andrew W. R. Waite, Thomas J. McAvoy, Dale E. Seborg	8
Process Economics James R. Couper, Darryl W. Hertz, (Francis) Lee Smith	
Transport and Storage of Fluids Meherwan P. Boyce, Victor H. Edwards, Terry W. Cowley, Timothy Fan, Hugh D. Kaiser, Wayne B. Geyer, David Nadel, Larry Skoda, Shawn Testone, Kenneth L. Walter	
Heat-Transfer Equipment Richard L. Shilling, Patrick M. Bernhagen, Victor M. Goldschmidt, Predrag S. Hrnjak, David Johnson, Klaus D. Timmerhaus	
Psychrometry, Evaporative Cooling, and Solids Drying Larry R. Genskow, Wayne E. Beimesch John P. Hecht, Ian C. Kemp, Tim Langrish, Christian Schwartzbach, (Francis) Lee Smith	
Distillation M. F. Doherty, Z. T. Fidkowski, M. F. Malone, R. Taylor	13
Equipment for Distillation, Gas Absorption, Phase Dispersion, and Phase Separation	
Henry Z. Kister, Paul M. Mathias, D. E. Steinmeyer, W. R. Penney, B. B. Crocker, James R. Fair	14

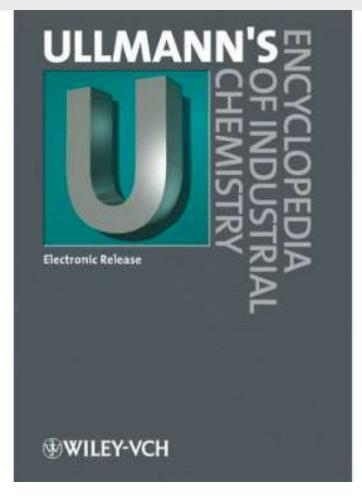

Liquid-Liquid Extraction and Other Liquid-Liquid Operations and Equipment	
Timothy C. Frank, Lise Dahuron, Bruce S. Holden, William D. Prince, A. Frank Seibert,	
Loren C. Wilson	. 15
Adsorption and Ion Exchange M. Douglas LeVan, Giorgio Carta	16
Gas-Solid Operations and Equipment Mel Pell, James B. Dunson, Ted M. Knowlton	. 17

Liquid-Solid Operations and Equipment Wayne J. Genck, David S. Dickey, Frank A. Baczek,	
Daniel C. Bedell, Kent Brown, Wu Chen, Daniel E. Ellis, Peter Harriott, Tim J. Laros, Wenping Li,	
James K. McGillicuddy, Terence P. McNulty, James Y. Oldshue, Fred Schoenbrunn, Julian C. Smith,	10
Donald C. Taylor, Daniel R. Wells, Todd W. Wisdom	
Reactors Carmo J. Pereira, Tiberiu M. Leib	. 19
Alternative Separation Processes Michael E. Prudich, Huanlin Chen, Tingyue Gu,	
Ram B. Cupta, Keith P. Johnston, Herb Lutz, Guanghui Ma, Zhiguo Su	. 20
Solid-Solid Operations and Processing Bryan J. Ennis, Wolfgang Witt, Ralf Weinekötter,	
Douglas Sphar, Erik Gommeran, Richard H. Snow, Terry Allen, Grantges J. Raymus,	
James D. Litster	21
Waste Management Louis Theodore, Kenneth N. Weiss, John D. McKenna, (Francis) Lee Smith,	
Robert R. Sharp, Joseph J. Santoleri, Thomas F. McGowan	. 22
Process Safety Daniel A. Crowl, Laurence G. Britton, Walter L. Frank, Stanley Grossel,	
Dennis Hendershot, W. G. High, Robert W. Johnson, Trevor A. Kletz, Joseph C. Leung,	
David A. Moore, Robert Ormsby, Jack E. Owens, Richard W. Prugh, Carl A. Schiappa Richard Siwek,	
Thomas O. Spicer III, Angela Summers, Ronald Willey, John L. Woodward	. 23
Energy Resources, Conversion, and Utilization Walter F. Podolski, David K. Schmalzer,	
Vincent Conrad, Douglas E. Lowenhaupt, Richard A. Winschel, Edgar B. Klunder,	
Howard G. McIlvried III, Massood Ramezan, Gary J. Stiegel, Rameshwar D. Srivastava,	
John Winslow, Peter J. Loftus, Charles E. Benson, John M. Wheeldon, Michael Krumpelt,	
(Francis) Lee Smith	. 24
Materials of Construction Oliver W. Siebert, Kevin M. Brooks, Laurence J. Craigie,	
F. Galen Hodge, L. Theodore Hutton, Thomas M. Laronge, J. Ian Munro, Daniel H. Pope, Simon J. Scott,	
John G. Stoecker II	. 25


Bibliografia

Indústria Química: Riscos e Oportunidades

Edição Português | por Pedro Wongtschowski | 29 dez. 2002



D.T. Allen, K.S. Rosselot – "Pollution prevention for chemical processes", John Wiley, New York, 1996.

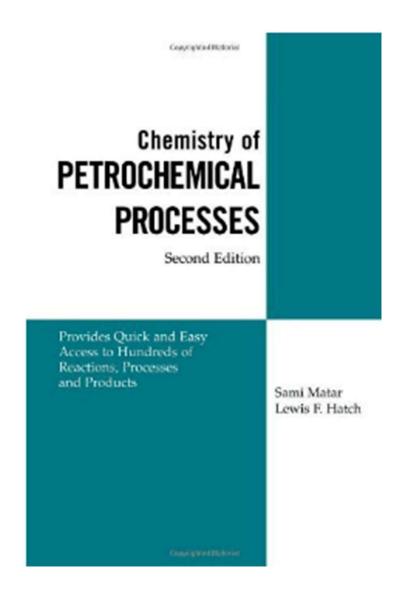
Bibliografia

Ullmann's Encyclopedia of Industrial Chemistry

https://onlinelibrary.wiley.com/doi/book/10.1002/14356007

Acesso em: 29 mar 2023

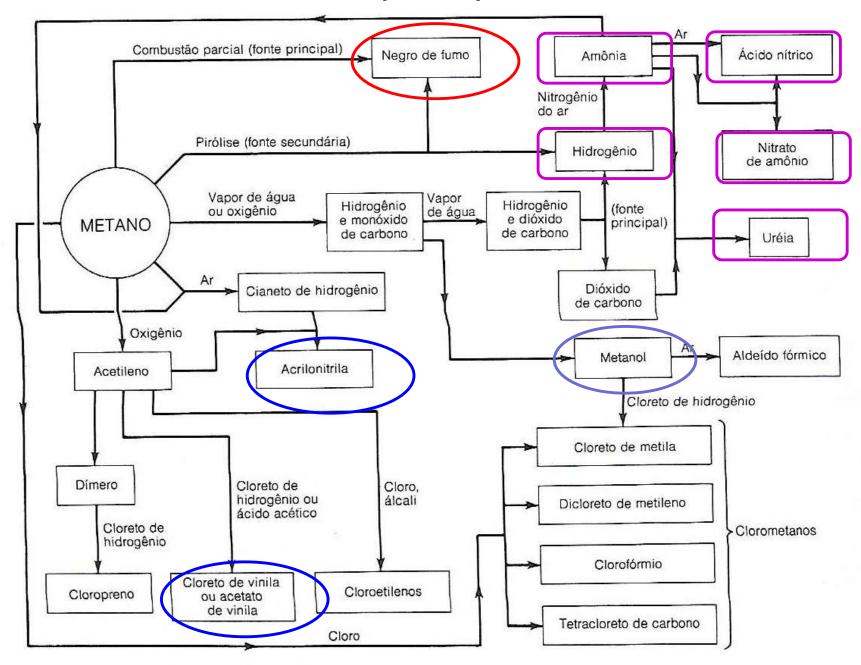
Bibliografia


Fundamentos do Refino de Petróleo: Tecnologia e 🗗 Economia Capa comum – Edição padrão, 18 setembro 2012

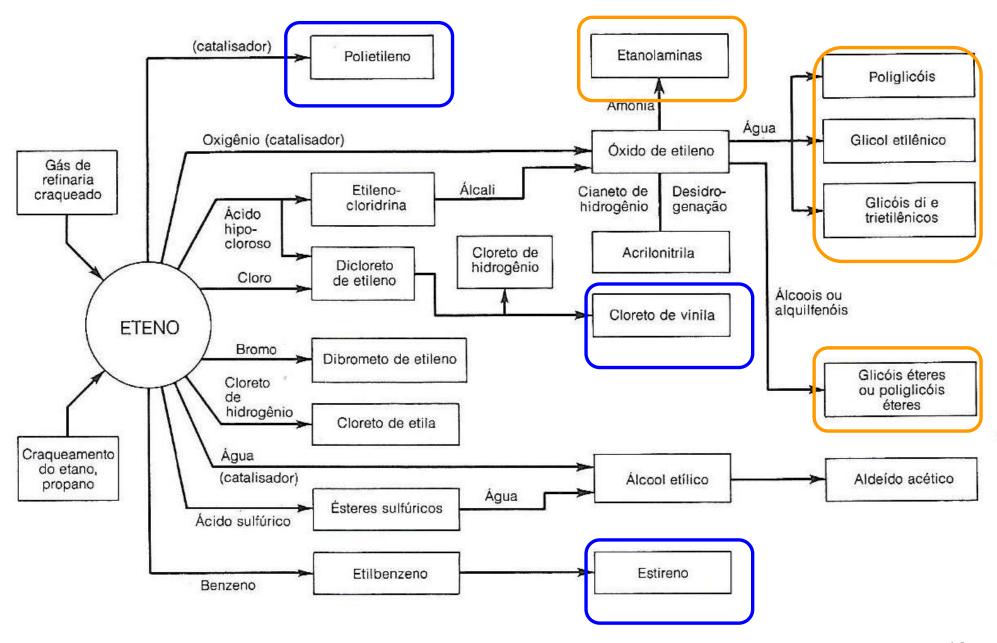
Edição Português | por Alexandre Salen Szklo (Autor), Victor Cohen Uller (Autor), & 1 mais

Chemistry of Petrochemical Processes (English Edition)

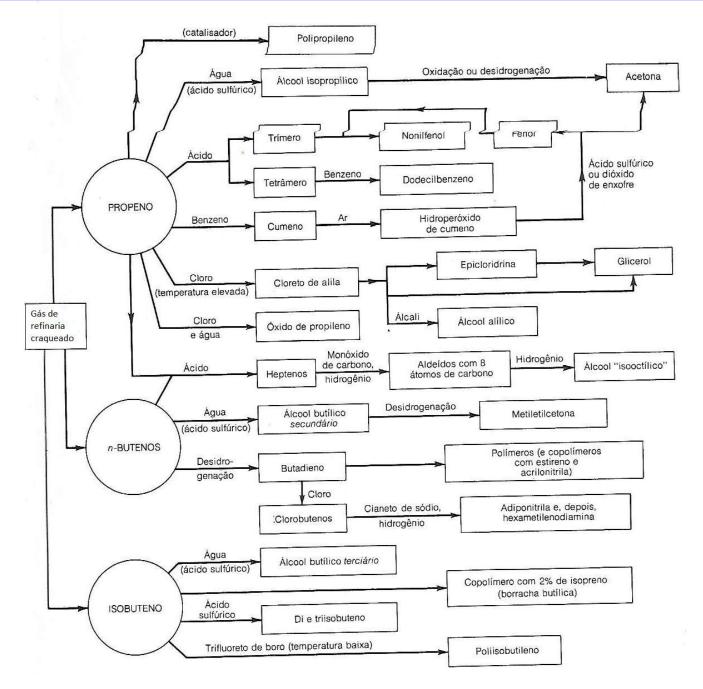
Edição Inglês | por Sami Matar Ph.D. e Lewis F. Hatch Ph.D. | 26 jul. 2001

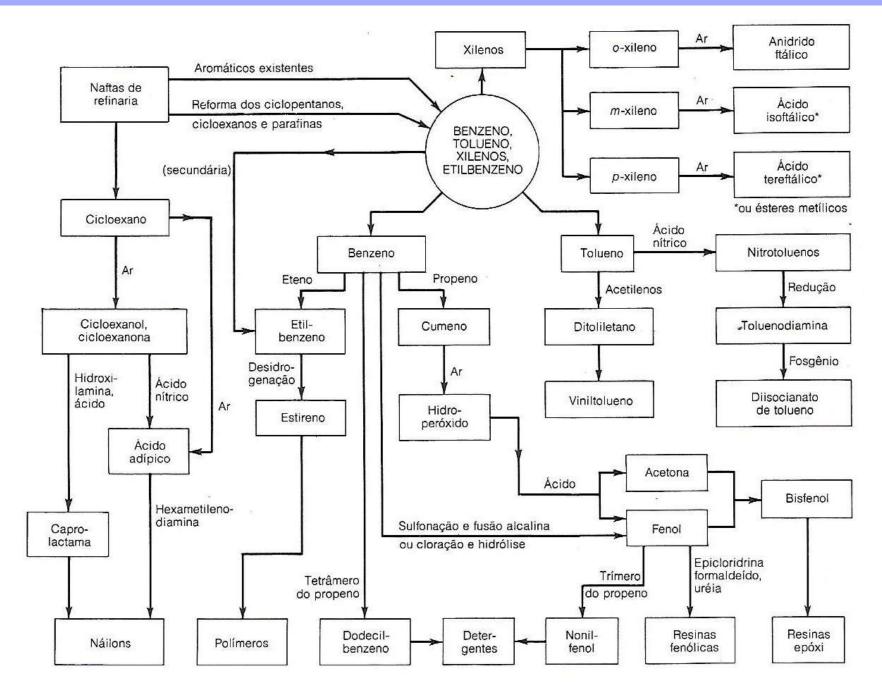

Bibliografia

Patentes:


INPI – Instituto Nacional de Propriedade Industrial

http://www.inpi.gov.br/


Derivados petroquímicos do metano


Derivados petroquímicos do eteno

Derivados petroquímicos do propeno e dos butenos

Derivados petroquímicos do benzeno, tolueno, xilenos

Produtos químicos

Commodity

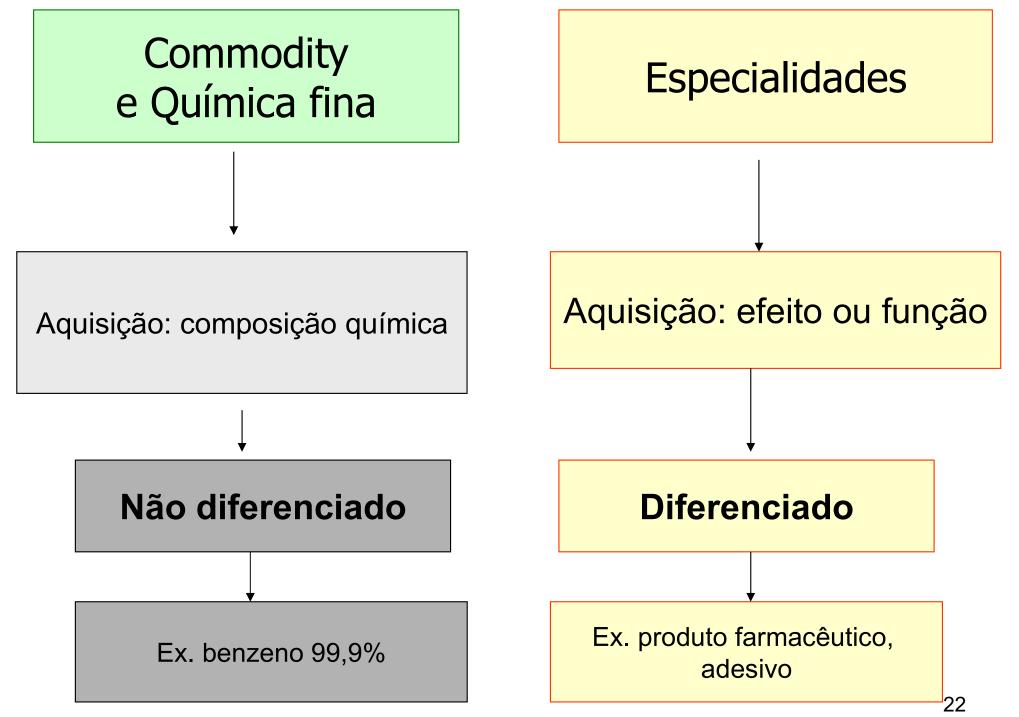
Química fina

Especialidades

Volume produção ↑ (maior que 1000t/ano)

Vendas:

composição química, pureza, preço


Ex.: H₂SO₄; N₂, O₂,

 CI_2 , C_2H_5

Volume produção ↓
(menor que
1000t/ano)
Vendas: composição
química, pureza,
preço
Ex.: ácido n-butírico
(usados em bebidas,
fragrâncias, etc.)

Volume produção ↓ (menor que 1000t/ano)

Adquiridos devido ao seu efeito (ou função) ao invés da composição química Ex.: farmacêuticos, pesticidas, perfumes, etc.

Classificação relativa

Ácido acrílico 99,9% não diferenciado
 Traços de impurezas (ppm) pode interferir em aplicações específicas.

 Nem todos produtos classificados como especialidades são diferenciados

Ex.: ácido acetilsalicílico (aspirina)

Polímeros

 Produtos diferenciados baseado nas suas propriedades mecânicas

 Escala de produção – maior do que 1000t/ano

Patentes

Protege um novo produto

Para um produto ser patenteado:
 Novo, útil e não-óbvio

Outra forma de proteção: segredo!
 Ex. coca-cola

Patentes

Como a fórmula da Coca-Cola se mantém secreta, mesmo com todas as técnicas da química moderna?

https://super.abril.com.br/mundo-estranho/como-a-formula-da-coca-cola-se-mantem-secreta-mesmo-com-todas-as-tecnicas-da-quimica-moderna/

Nunca foi patenteada!

Informação sobre ingredientes usados: 161

https://www.coca-colaproductfacts.com/en/ingredients/

SERVIÇOS

Marcas

Patentes

Desenhos Industriais

Indicações Geográficas

Programas de Computador

Topografias de Circuitos Integrados

Contratos de Tecnologia e de Franquia

Quais são os tipos de patentes e prazo de validade?

- Patente de Invenção (PI): Produtos ou processos que atendam aos requisitos de atividade inventiva, novidade e aplicação industrial. Sua validade é de 20 anos a partir da data do depósito.
- Patente de Modelo de Utilidade (MU): Objeto de uso prático, ou parte deste, suscetível de aplicação industrial, que apresente nova forma ou disposição, envolvendo ato inventivo, que resulte em melhoria funcional no seu uso ou em sua fabricação. Sua validade é de 15 anos a partir da data do depósito.
- Certificado de Adição de Invenção (C): Aperfeiçoamento ou desenvolvimento introduzido no objeto da invenção, mesmo que destituído de atividade inventiva, porém ainda dentro do mesmo conceito inventivo. O certificado será acessório à patente e com mesma data final de vigência desta.

Fonte: INPI (https://www.gov.br/inpi/pt-br)

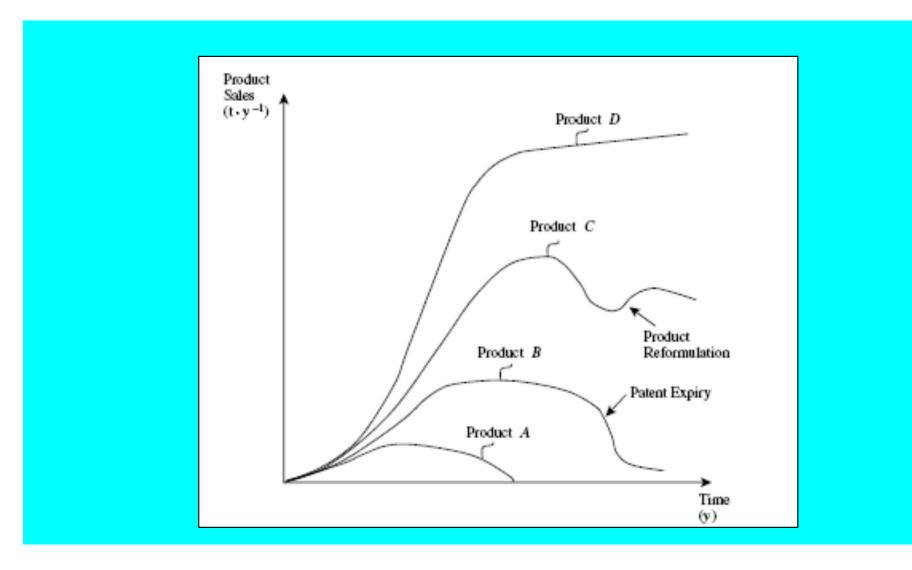
É necessário fazer uma pesquisa para saber se o invento já existe?

Antes de depositar o pedido de Patente, é recomendável que se faça primeiro uma busca para saber se não há nada igual ou semelhante já patenteado não somente em termos de Brasil, mas de mundo.

A patente só tem validade no Brasil?

A patente é válida somente no território nacional.

Posso requerer proteção para o meu invento também em outros países? Como faço o depósito do meu pedido fora do Brasil?


Neste caso, é preciso depositar um pedido equivalente no país ou região onde se deseja obter a patente. O pedido depositado no Brasil deverá ser traduzido para o idioma do país/região onde se deseja depositar e deverá ser nomeado um procurador para representar a empresa naquele país. O procedimento de depósito em diferentes países pode ser simplificado, usando o Tratado de Cooperação de Patentes (PCT), no qual o INPI atua como escritório receptor e realiza busca/exame preliminar.

Quais os direitos conferidos ao titular da Patente?

O titular da Patente tem o direito de impedir terceiros, sem o seu consentimento, de produzir, colocar à venda, usar, importar produto objeto da patente ou processo ou produto obtido diretamente por processo patenteado. Terceiros podem fazer uso da invenção somente com a permissão do titular (licença).

Fonte: INPI (https://www.gov.br/inpi/pt-br)

Ciclos de vida de produtos

Valores agregados das diferentes classes de produtos químicos

Maior para química fina e especialidades

Menor para commodities

- Commodities baixo valor agregado e grandes volumes de produção
- Química fina e especialidades alto valor agregado e pequenos volumes de produção

Projeto de processo para commodity

 Importante: manter custos de operação o mais baixo possível

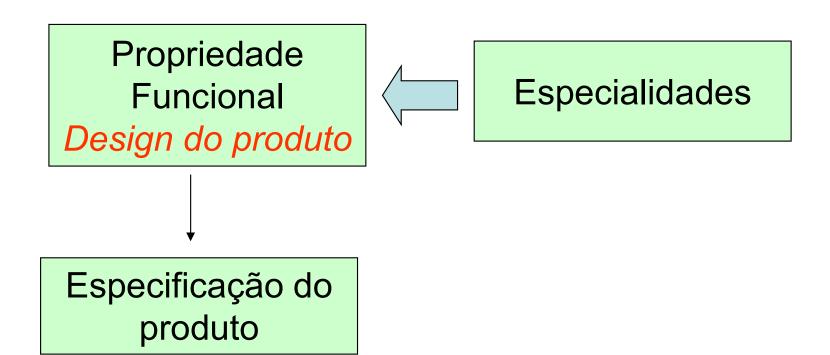
Projeto de processo para especialidades

- Prioridade: produto! (ao invés do processo)
- Custo de capital mais baixo (por causa da escala)
- Tempo do produto no mercado importante!!! (principalmente se existe patente)
- Redução do tempo de pesquisa básica, teste do produto, estudos de planta piloto, projeto do processo, construção da planta ⇒lucratividade↑

Projeto de processo

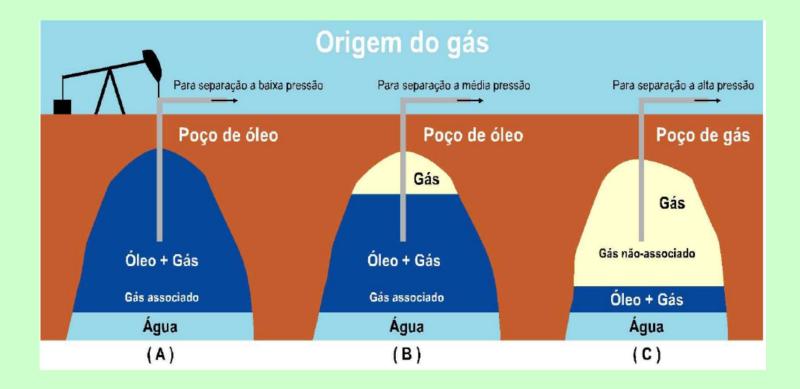
Commodity

Pouca inovação em produto Inovação em processo Equipamentos: processo específico


Química fina Especialidades

Vendas: mercado com baixo volume
Ciclo de vida do poduto curto
Menor tempo disponível para etapas
Equipamento:

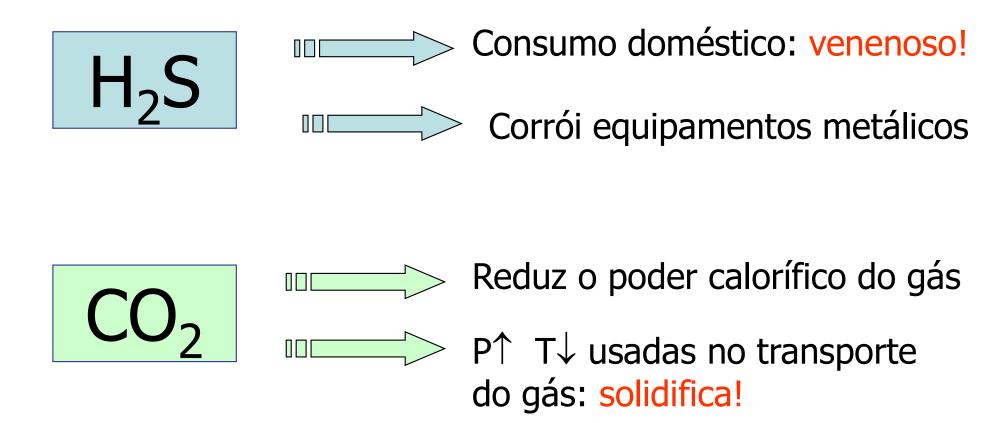
multipropósito


Formulação do problema do projeto

Especificação do produto **Ex. pureza**

Matérias-primas para indústria petroquímica

- Óleo cru e gás natural
- Gás natural



Composição de gases naturais não-associados e associados

	Non-associated gas		Associated gas	
Component	Salt Lake US	Kliffside US	Abqaiq Saudi Arabia	North Sea UK
Methane	95.0	<u></u> >65.8	62.2	85.9
Ethane	0.8	3.8	15.1	8.1
Propane	0.2	1.7	6.6	2.7
Butanes	_	0.8	2.4	0.9
Pentane and Heavier	_	0.5	1.1	0.3
Hydrogen sulfide	_	_	2.8	_
Carbon dioxide	3.6	_	9.2	1.6
Nitrogen	0.4	25.6	_	0.5
Helium	_	1.8	_	_

S. Matar, L.F. Hatch – "Chemistry of Petrochemical Processes", Gulf Professional Publishing, Houston, 2000, Pág. 2

Processos de tratamento do gás natural

Efeitos fisiológicos da concentração de H₂S no ar

Concentração no ar:

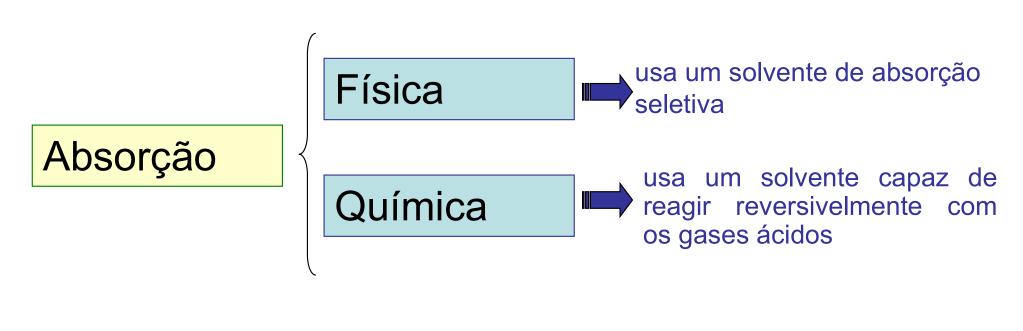
% em volume = 0,00013 ou 0,18 mg/m³ – odor característico e desagradável percebido com 0,13 ppm.

% em volume = 0,001 ou 14,41 mg/m³ - concentração limite aceitável pela OSHA

% em volume = 0,02 ou 288,06 mg/m³ – perde-se a sensibilidade ao cheiro rapidamente, queima os olhos e a garganta.

% em volume = 0,05 ou 720,49 mg/m³ – vítima precisará ser ressuscitada artificialmente

U.S. Department of Labor Occupational Safety & Health Administration (OSHA)


http://www.osha.gov/

FUNDACENTRO – Fundação Jorge Duprat Figueiredo de Segurança e Medicina do Trabalho

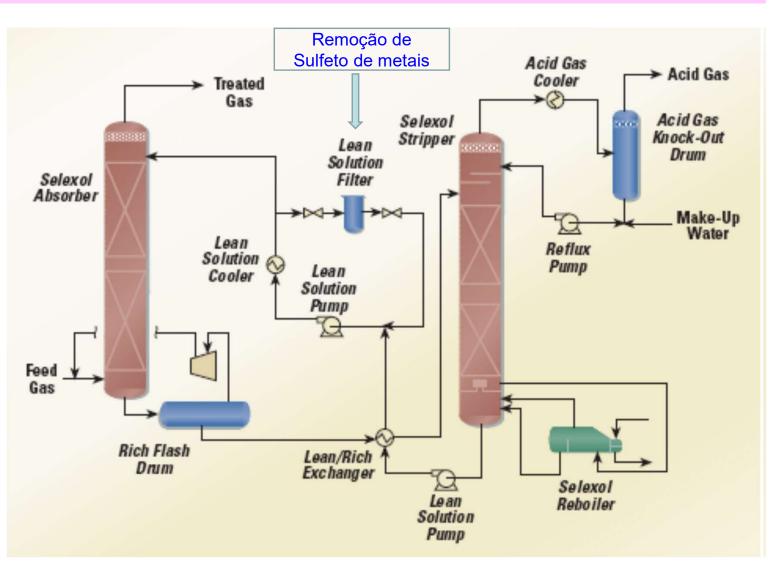
http://fundacentro.gov.br/

Tratamento do gás ácido

Métodos para remoção ou redução do gás ácido:

Adsorção

usa um sólido adsorvente



Absorção física usando um solvente de absorção seletiva

Dimetil-éter de polietileno glicol CH₃(OCH₂CH₂)_nOCH₃ n= 3 a 9

Principais aplicações: Remoção seletiva de H₂S e CO₂

MC1

Marcos Costa; 10/03/2021

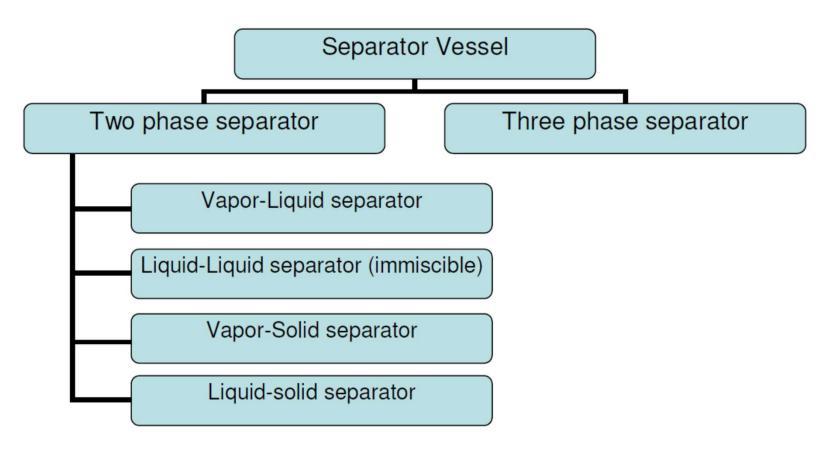
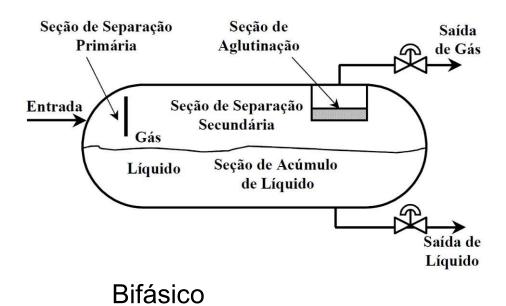
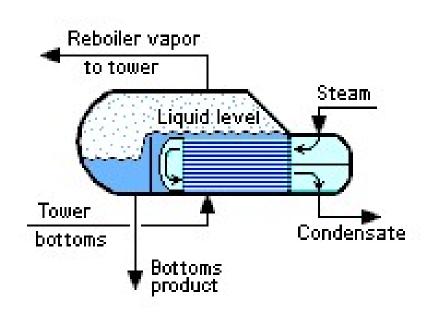
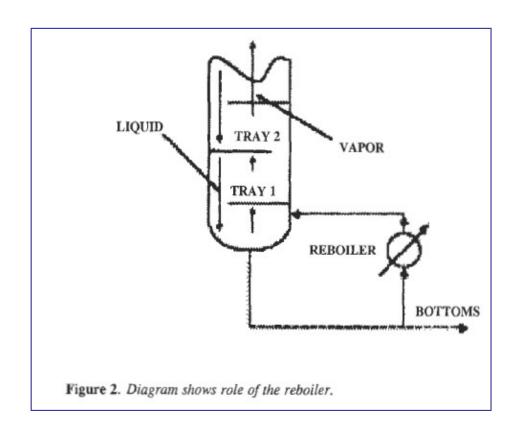
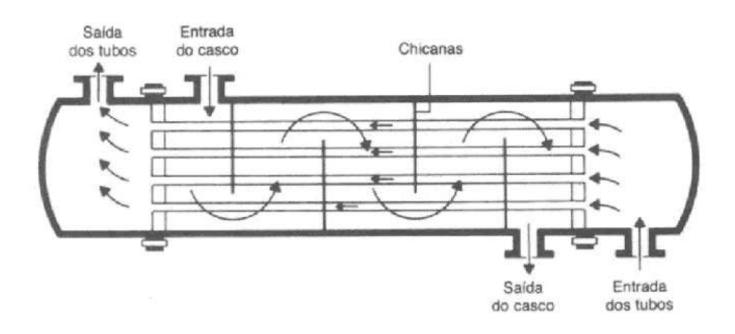



Figure 1. General types of separator vessel

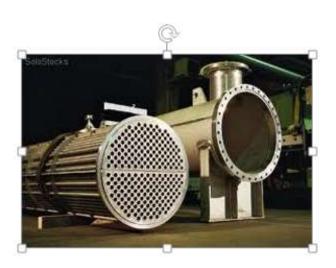

Separadores

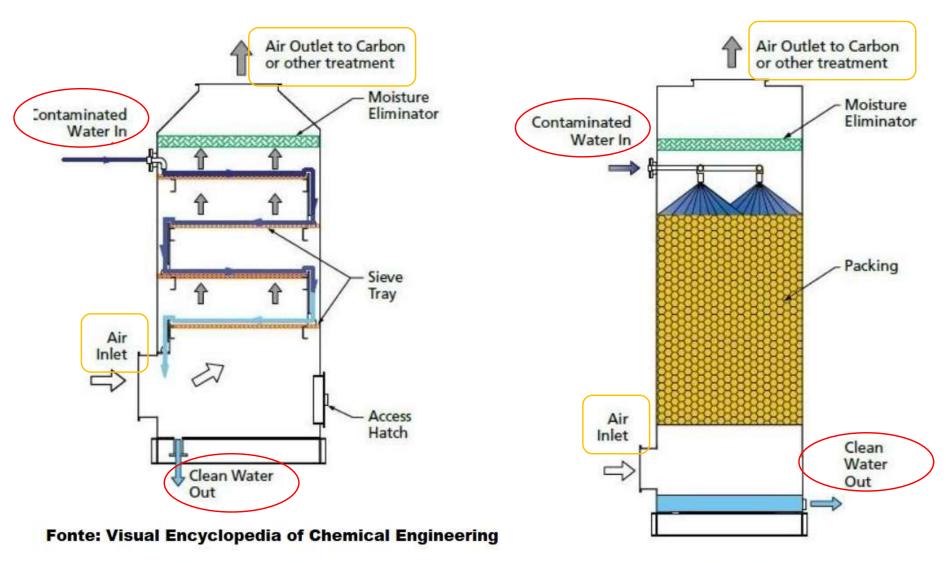


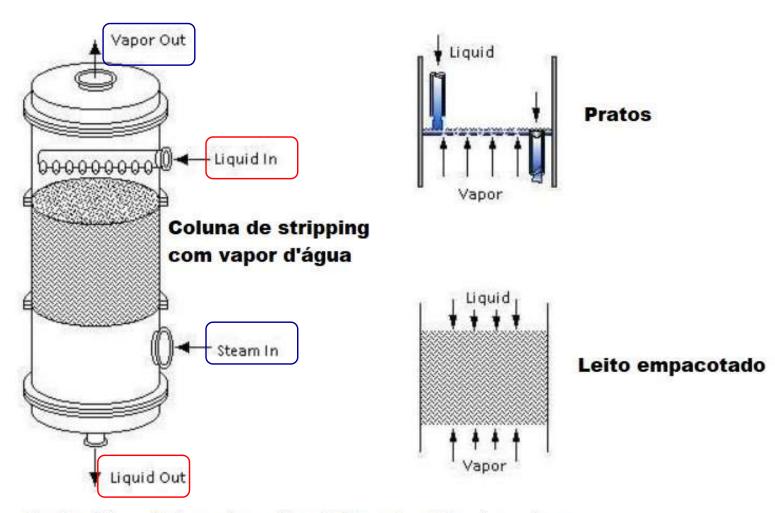
Válvula de Controle de Pressão ➤ Saída de Gás Extrator de Nevoa Defletor de Entrada Chaminé Entrada Condutor de Líquido Óleo Saída de Óleo Espalhador Válvula de Controle de Nível Água ➤ Saída de Água


Trifásico

Reboiler (refervedor)




Trocador de calor


Equipamentos de absorção e stripping

Sieve-Tray Air Stripper

Packed-Column Air Stripper

Equipamentos de absorção e stripping

Fonte: Visual Encyclopedia of Chemical Engineering

Processo Selexol^{1M}

Absorção física usando um solvente de absorção seletiva

Remoção seletiva de H₂S e COS O=C=S

$$o=c=s$$

Sulfeto de carbonila - gás sem cor, com odor de enxofre. Decompõe-se lentamente em água e mais rapidamente na presença de uma base.

 Remoção seletiva de H₂S/COS, além da remoção total de CO2 em gaseificação para a geração de hidrogênio de alta pureza para refinaria

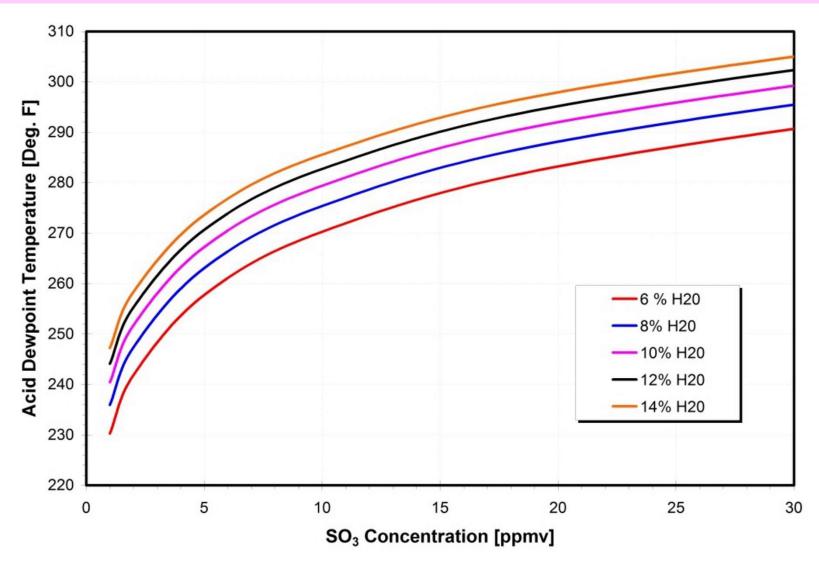
 Tratamento do gás natural para obtenção de LNG (liquefied natural gas) ou especificação para tubulação com redução do ponto de orvalho (dew point)

Ponto de orvalho (Dew point)

Ponto de Orvalho

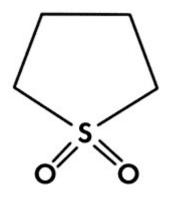
É a temperatura em que se inicia a condensação do vapor d'água presente em uma massa de gases à determinada pressão. O ponto de orvalho é função da concentração do vapor d'água na massa de gases.

Esta temperatura é uma referência importante para o limite mínimo de temperatura dos gases de exaustão.


Em combustíveis que contém enxofre estão presentes nos exaustos o dióxido de enxofre(SO₂) e trióxido(SO₃) de enxofre. A condensação do vapor d'água tem que ser evitada pois, na presença destes compostos de enxofre ocorre a formação do ácido sulfúrico e corrosão violenta das partes metálicas do sistema de exaustão. Além disso, a presença destes compostos nos gases de exaustão eleva o ponto de orvalho entre 14 e 42 °C.

Flares

Fonte: https://engenharia-quimica.blogspot.com/2014/06/sobre-as-flares-sua-funcao-e-o-seu.html


Variação do ponto de orvalho (Dew point) de um gás combustível em função das concentrações de SO₃ e H₂O presentes

Fonte: http://dx.doi.org/10.4236/mme.2012.23013

Absorção física/Absorção química usando solventes seletivos

- Remoção de H₂S, CO₂, COS, mercaptans e sulfetos orgânicos
- Remoção seletiva de H₂S a partir de gases contendo CO₂
- Remoção profunda de CO₂ a partir do gás de síntese e gás natural liqüefeito (LNG)
- Remoção da maior parte do CO₂ a partir de correntes gasosas

Absorvente físico

Sulfolane – Características:

Versátil

Polaridade alta

Quimicamente e termicamente estável

Miscível com água e hidrocarbonetos aromáticos

Aprótico

Reciclável

Absorção química usando um solvente de absorção seletiva

- Sulfinol-M contém metildietanolamina (MDEA): remoção da maior parte de CO₂ e remoção seletiva da SO₂
- Sulfinol-D contém diisopropropanolamina (DIPA): remoção profunda de CO₂ e SO₂: 45 Wt. % DIPA, 40 Wt. % sulfolane and 15 Wt. % water

PRINCIPAIS ABSORVENTES QUÍMICOS UTILIZADOS NA INDÚSTRIA

Metiletanolamina (MEA)	Dietanolamina (DEA)	Trietanolamina (TEA)
HN OH	HO \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	HO OH
Metildietanolamina (MDEA)	2-metil-1-propanol (AMP)	Diisopropanolamina (DIPA)
HO OH CH ₃	HO NH ₂	H ₃ C OH H OH CH ₃

Metiletanolamina (MEA)

$$\begin{split} &2(RNH_2) + H_2S \leftrightarrow (RNH)_2S \\ &(RNH_3)_2S + H_2S \leftrightarrow 2(RNH_3)HS \\ &2(RNH_2) + CO_2 \leftrightarrow RNHCOONH_3R \end{split}$$

Reações reversíveis por mudança de temperatura

MEA + COS (ou CS₂) — sais termicamente estáveis (não regeneráveis)

Dietanolamina (DEA)

$$\begin{aligned} 2R_2NH + H_2S &\leftrightarrow (R_2NH)_2S \\ (R_2NH_2)_2S + H_2S &\leftrightarrow 2(R_2NH_2)HS \\ 2R_2NH + CO_2 &\leftrightarrow R_2NCOONH_2R_2 \end{aligned}$$

DEA + COS (ou CS₂) — remoção parcial (regeneração sem muita perda da amina

Metildietanolamina (MDEA)

MDEA não reage primariamente com CO₂

Fonte:

https://www.researchgate.net/publication/341960166 Selection of Amine in Natural Gas Sweetening Process for Acid Gases Removal A Review of Recent Studies

Reação dos 3 tipos de aminas com H₂S:

$$R_1R_2R_3N + H_2S \Leftrightarrow R_1R_2R_3NH^+ + HS^-$$

Com CO₂, reações mais complexas:

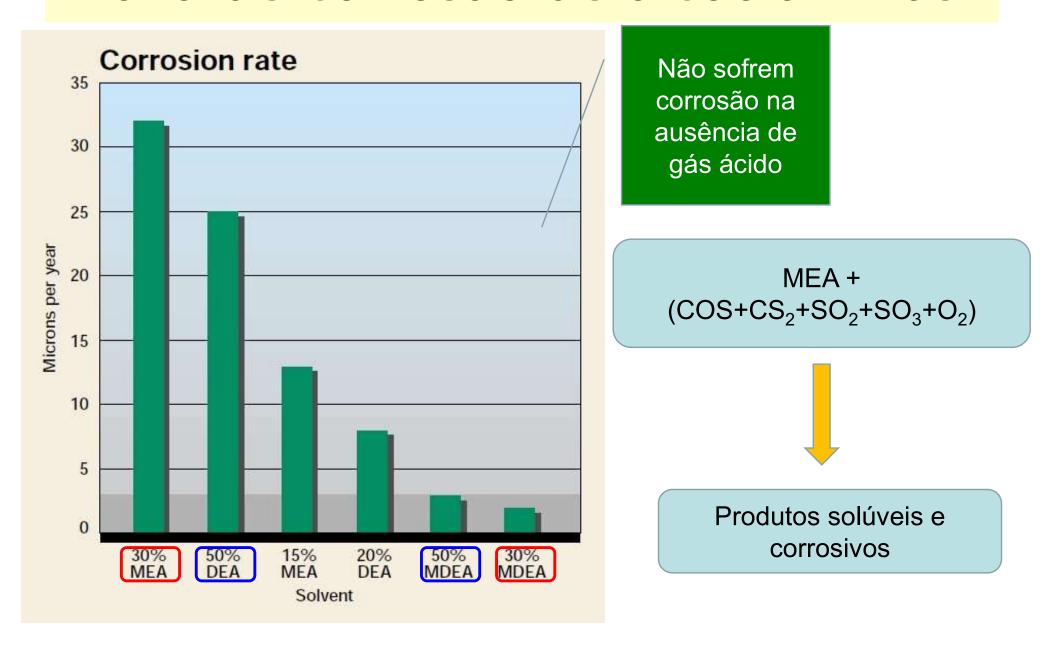
Ocorre com os 3 tipos de aminas:

$$CO_2 + H_2O \Leftrightarrow H_2CO_3$$

$$H_2CO_3 \Leftrightarrow HCO_3^- + H^+$$

$$H^+ + R_1R_2R_3N \Leftrightarrow R_1R_2R_3NH^+$$

Mais lentas


Ocorre apenas com as primárias e secundárias:

 $R_1R_2N^+ + HCOO^- + R_1R_2NH \Leftrightarrow R_1R_2NCOO^- + R_1R_2NH_2^+$

Mais rápidas

$$CO_2 + R_1R_2NH \Leftrightarrow R_1R_2N^+ + HCOO^-$$

Taxa de corrosão de alcoolaminas

Fonte: Dupart, M.S., Bacon, T.R., Edwards, D.J. – Understanding corrosion in alkanoamine gas treating plants. Part 1. Hydrocarbon Processing, pp.3-7 (1993)

Características de absorção de solventes químicos e físicos

Fonte: https://www.yumpu.com/en/document/read/7563963/use-of-selexolr-process-in-coke-gasification-the-dow- Acessado em 24/09/2020.

Qual dos dois é o mais vantajoso na regeneração?

Características de absorção de solventes químicos e físicos

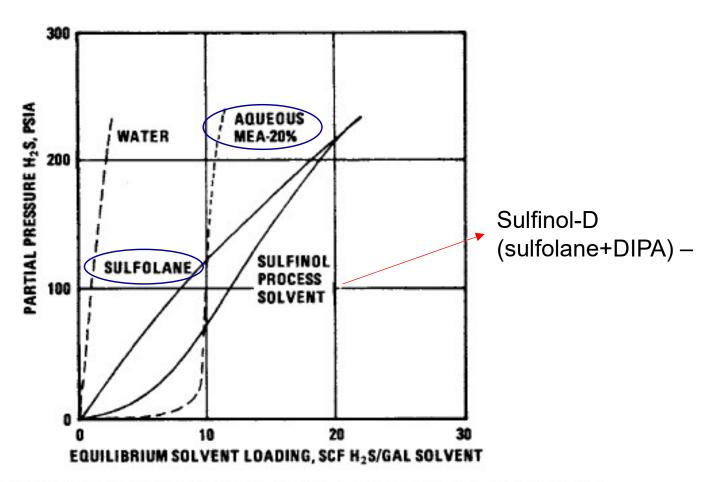


Figure 14-20. Solubility of hydrogen sulfide in Sulfinol solvent. (Dunn et al., 1964)

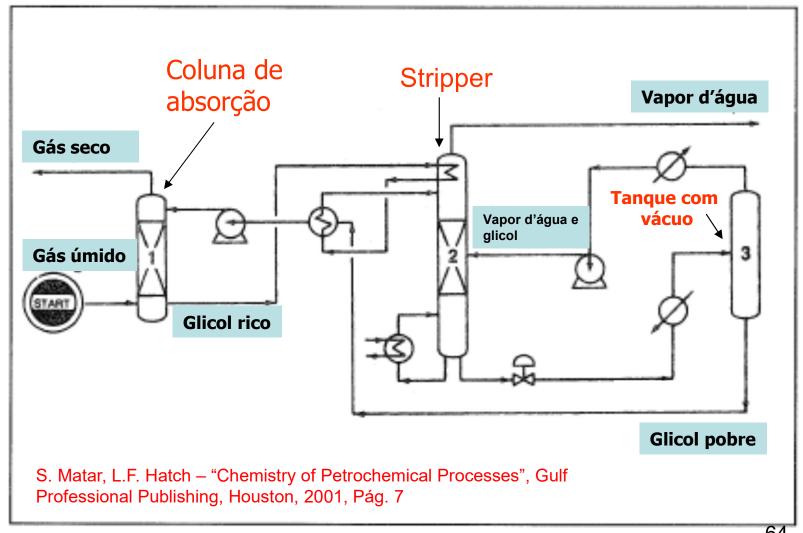
Dunn, C. L., Freitas, E. R., Goodenbour, J. W., Henderson, H. T., and Papadopoulos, M. N., 1964, "New Pilot Plant Data on Sulfinol Process," *Hydro. Process.*, Vol. 43, March, pp. 150-154.

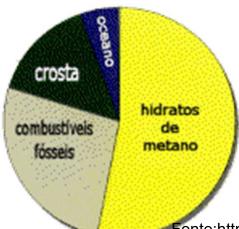
Adsorção física

Tipo 13X

Composição = $1 \text{ Na}_2\text{O}$: $1 \text{ Al}_2\text{O}_3$: $2.8 \pm 0.2 \text{ SiO}_2$: $x\text{H}_2\text{O}$ Ex. de aplicação: secagem de gás comercial (remoção simultânea de água e CO_2)

Tipo 3Å

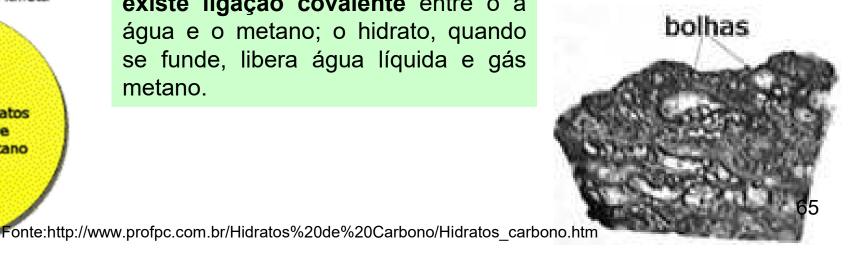

Composição: $0.6 \text{ K}_2\text{O}$: $0.40 \text{ Na}_2\text{O}$: $1 \text{ Al}_2\text{O}_3$: $2.0 \pm 0.1\text{SiO}_2$: $x \text{ H}_2\text{O}$ Ex. de aplicação: desidratação de correntes de hidrocarbonetos insaturados


Remoção de água

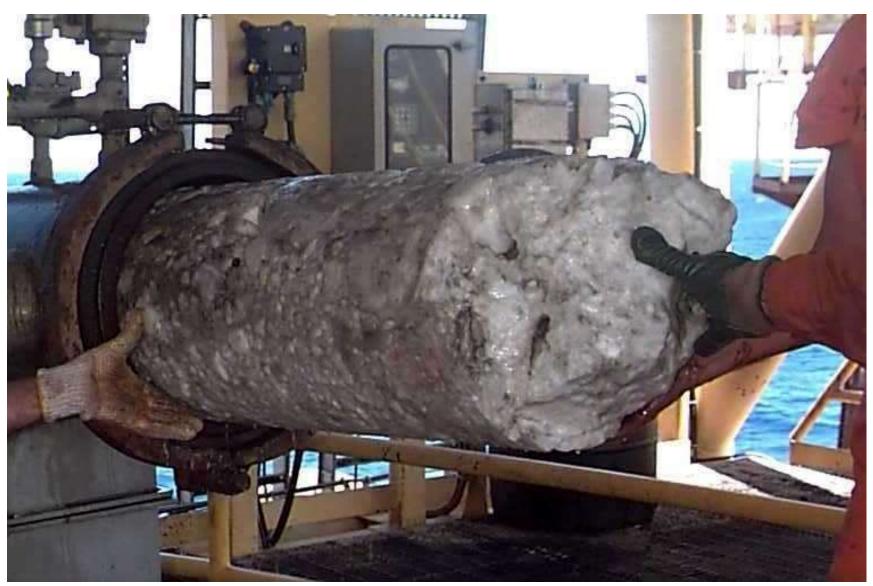
• Etileno glicol, dietileno glicol, trietileno glicol

Hidratos de metano

Carbono em nosso Planeta



Quando as bactérias digerem a matéria orgânica, no fundo do mar, liberam moléculas de CH₄ (metano).


Estas moléculas acabam "aprisionadas" por cristais de água, formando os hidratos ou, ainda, se combinam com o limo e o barro do fundo do oceano, formando bolhas de gás entre densas camadas de barro.

Uma estrutura normal de hidrato de metano contém 46 moléculas de água e 8 moléculas de metano. Sua aparência é como o gelo mas, entretanto, é estável somente a altas pressões e baixas temperaturas. Não existe ligação covalente entre o a água e o metano; o hidrato, quando se funde, libera água líquida e gás metano.

Formação de hidratos de metano

Hidratos de metano

Embora pareça com gelo, o hidrato de metano é inflamável

A China anunciou (maio/2017) ter extraído do fundo do Mar da China Meridional uma quantidade considerável de hidrato de metano, também conhecido como gelo combustível, que é tido por muitos como o futuro do abastecimento de energia.

Fonte: BBC Brasil

http://www.bbc.com/portuguese/geral-40029080

Hidrato de metano

Japão: quer extrair energia de hidrato de metano "gelo ardente". Previsão: depois de 2023

Fonte: Redação IPC Digital - 16/03/17

Análises típicas do gás natural antes e após o tratamento

Component		Pipeline gas
mole %	Feed	
N_2	0.45	0.62
CO_2	27.85	3.50
H_2S	0.0013	
C_{l}	70.35	94.85
C_2	0.83	0.99
$ C_2 $ $ C_3 $	0.22	0.003
C_4	0. 13	0.004
C ₄ C ₅ C ₆₊	0.06	0.004
C ₆₊	0.11	0.014

S. Matar, L.F. Hatch – "Chemistry of Petrochemical Processes", Gulf Professional Publishing, Houston, 2001, Pág. 8

Líquidos do gás natural (NGL)

Fracionamento do gás natural:

- Corrente rica em etano produção de etileno
- Gás liqüefeito de petróleo (LPG) propano/butano combustível ou matéria-prima para obtenção de outros produtos químicos
- Gasolina natural (NG) hidrocarbonetos C⁺⁵ aumentar a sua pressão de vapor